Deprecated: Creation of dynamic property db::$querynum is deprecated in /www/wwwroot/zzmnxt.com/inc/func.php on line 1413

Deprecated: Creation of dynamic property db::$database is deprecated in /www/wwwroot/zzmnxt.com/inc/func.php on line 1414

Deprecated: Creation of dynamic property db::$Stmt is deprecated in /www/wwwroot/zzmnxt.com/inc/func.php on line 1453

Deprecated: Creation of dynamic property db::$Sql is deprecated in /www/wwwroot/zzmnxt.com/inc/func.php on line 1454
浙江大学赵璐、葛栩涛:高内涵成像系统在斑马鱼活体成像中的应用心得_产品中心_华体会登录入口_华体会体育首页登录_华体育app官方入口
华体会登录入口
  • 3
  • 2
  • 1
  • WAPbanner
产品中心首页 > 产品中心

浙江大学赵璐、葛栩涛:高内涵成像系统在斑马鱼活体成像中的应用心得

发布时间:2024-10-25 作者: 产品中心

产品介绍

  模式生物斑马鱼凭借繁殖力强、发育迅速、幼鱼体积小且通体透明等特点,加上众多特定细胞标记转基因荧光鱼系的运用,成为目前适合活体高通量荧光成像的唯一脊椎模式生物,在大规模药物筛选领域被日益关注。

  为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息别组织策划

  “高内涵成像技术”主题约稿活动(点这里就可以看)。本期,特别邀请到浙江大学药学院药物信息学研究所副教授赵璐博士和研究生葛栩涛同学谈一谈高内涵成像系统在斑马鱼活体成像中的应用心得。

  ®集成软件,提供了高内涵筛选的整体解决方案。Thermo Fisher公司推出了CellInsight CX7 Pro LZR高内涵筛选平台,同样采用Nipkow 旋转和sCMOS相机,配套Amira软件,助力高内涵筛选和分析。而Molecular Devices 公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统采用AgileOptix™转盘式共聚焦和 sCMOS 相机,具有大视野、宽动态范围,多种成像模式,支持自动加样等特点,同时其具有3D成像和分析的能力。新款的ImageXpress Confocal HT.ai系统进一步增加了自动水浸物镜、IN Carta 图像分析等功能,简化高级表型分类和 3D 成像分析的工作流程。

  模式生物斑马鱼凭借繁殖力强、发育迅速、幼鱼体积小且通体透明等特点,加上众多特定细胞标记转基因荧光鱼系的运用,成为目前适合活体高通量荧光成像的唯一脊椎模式生物,在大规模药物筛选领域被日益关注。然而,常规的荧光显微镜成像具有速度慢、清晰度不佳以及图像处理过程繁琐等问题。本文主要以Molecular Devices公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统为例,分享本团队在对斑马鱼幼鱼进行高内涵成像及图片处理分析中的一些经验。首先,为了较好的成像效果,用于成像的胚胎通常要进行以下预处理:

  (1) 黑色素的抑制:斑马鱼胚胎约发育至24小时左右,躯干及脑部皮肤及视网膜会开始形成逐渐黑色素,影响胚胎成像效果,所以通常在胚胎收集后1天内在培养基中添加苯硫脲(200uM),以抑制黑色素的生成;(2) 胚胎破膜:若用以成像或药物处理的斑马鱼胚胎尚未破膜,需将胚胎孵育于蛋白酶(2mg/ml)中一段时间,随后加入培养基轻轻吹打,使胚胎与绒毛膜分离;(3) 胚胎麻醉和摆放:大部分情况下,成像需保持胚胎于静止位,可考虑使用三卡因(0.016%)对斑马鱼进行麻醉,随后将斑马鱼逐孔加入96孔板内,轻吹并尽量保证其处于侧卧的。

  Micro Confocal系统在细胞上能够支持心肌细胞跳动和干细胞分化等快速和罕见事件进行成像。在斑马鱼模型上一样能支持血液流动以及心脏跳动的成像。以动态血流为例,我们最终选择了红细胞绿色荧光标记的鱼系Tg (Lcr:eGFP)来测试。具体拍摄流程为:首先在 2 倍镜或 4 倍镜下定位胚胎并进行初步手动对焦,也可使用高内涵成像平台自带软件MetaXpress 编程进行自动对焦。选中血管区域(一般选择在斑马鱼背主动脉和尾静脉位点,方便后续统计),切换 20 倍镜拍摄视频。另外,后续的人工量化血细胞流动通常费时费力,能够正常的使用MetaXpress 软件的journal模块自动测算单位时间内流过的红细胞数目(Ref. 任灿, 陈雪纯, 吴慧敏, 赵璐, 王毅. (2021). 基于高内涵成像系统的斑马鱼血流动态分析. // 高内涵成像及分析实验手册. Bio-101: e1010854. DOI: 10.21769/BioProtoc.1010854)。

  ImageXpress支持至多5或7通道的荧光成像,因此能实现不同荧光标记细胞的共同成像。拍摄方式与动态摄影类似:先在低倍镜下初步对焦,进而选择心脏区域,切换10倍镜分别拍摄两个通道下的荧光图像。在多孔或整板成像过程中,由于孔与孔之间的斑马鱼位置存在偏差,或不同胚胎本身发育状态有所差异等原因,不同孔的最佳聚焦平面往往会变化,限制了高通量成像。为了方便焦平面的寻找,一个应对方案是使用大步长(10~30um)的Z-stack拍摄初始焦平面上下一定厚度范围内(200um)的一系列图像,再从中挑选最清晰的一帧即可。图1a展示了3dpf斑马鱼心脏和血管内皮Tg (Cmlc2:eGFP; Kdrl:mcherry)共同成像的效果图,能清楚地看到心房和主动脉连接处存在共定位。图1b为3dpf斑马鱼红细胞和血管内皮Tg (Lcr:eGFP; Kdrl:mcherry) 共同成像的效果图,能清楚地看到红细胞位于血管中。此外,目前有一些商品化的特殊孔板可帮助保持胚胎在特定位置,但使用场景仍有较多局限性,尚需进一步优化。

  斑马鱼胚胎器官厚度通常在几十至上百微米之间,或拥有复杂的立体结构,因此简单的2D图片往往不能获取高质量信息。我们一样能使用Z-stack程序拍摄立体图像,不同的是步距需要设置比较小,通常为1~3um。拍摄结束后,能够正常的使用Z project将堆栈图三维投影成一张2D图像,也能够正常的使用3D project将系列图重构成立体图像。另外,10倍镜下难以拍摄全鱼,能够正常的使用多视野拼接的方式得到全鱼荧光。这一部分同样支持多通道荧光成像,图2a展示了Z project重构的中性粒细胞和血管内皮荧光Tg (Lyz:eGFP; Kdrl:mcherry)共同成像的效果图,图2b展示了红细胞和血管及淋巴管细胞Tg (Gata1:dsRed; Fli1:eGFP)共同成像的效果图。补充视频1和2分别展示斑马鱼脑部血管以及血管叠加红细胞的3D重构图像。

  最后,使用ImageXpress成像系统来进行斑马鱼成像还存在一些问题。比如,高强度的激光光源对斑马鱼有一定的刺激,有几率会使其产生应激性游动,造成成像失败,因此对麻醉效果有较高的要求,但在减少应激反应的同时也要注意不可以麻醉过度(浓度太高或时间太长)引起胚胎损伤或死亡。另外,目前大部分高内涵成像系统的配套软件在自动定位斑马鱼胚胎及寻找最佳焦平面的功能模块中还有比较大的局限性。在批量成像中,大多数只能做到相似焦平面的孔间自动成像,对于焦平面差异较大的孔,则需要手动调焦,极大影响了拍摄效率。因此,高通量成像目前仅能支持孵化天数较小的胚胎(一般3dpf以内,鱼泡尚未发育且运动能力较弱)的成像,对发育后期的斑马鱼胚胎或幼鱼还不可以进行批量成像。期待未来在功能模块加强完善后,可支持孔板内任意位置及焦平面的高质量成像。最后,在图像数据分析上,尽管我们的前期工作已开发了多个模型的自动分析算法(如心脏、血流动力学),但仍有许多其他模型缺乏对应的分析算法(如血管、免疫细胞、神经系统的分布和行为)等,值得进一步开拓。

  本文作者: 葛栩涛(研究生) 赵璐(副教授),浙江大学药学院药物信息学研究所

  赵璐博士,浙江大学药学院药物信息学研究所副教授、博士生导师、浙江大学“求是青年学者”,博士毕业于美国耶鲁大学医学院。现为浙江大学中药科学与工程学系模式生物平台负责人,研究方向为基于斑马鱼多模态成像的中药药效物质发现。获浙江省杰出青年科学基金支持,主持国家自然科学基金项目2 项,浙江省自然科学基金项目2 项,研究成果获教育部自然科学二等奖1 项。以第一或通讯作者发表PNAS, Engineering等学术论文18 篇,被Nature、Lancet等期刊引用1050 余次。

  21级研究生。主要研究方向为斑马鱼高内涵活体荧光成像技术在中药药效物质筛选中的应用。擅长斑马鱼相关实验技术和多种荧光显微的斑马鱼活体成像。曾获2022长三角天然药物化学研讨会论文评选二等奖,浙江大学医学院公共技术平台显微注射比赛一等奖,2022-2023学年浙大药学院研究生学术创造新兴事物的能力单项荣誉。

首页

产品

咨询

1

电话

联系